(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), 0) →+ s(minus(x, 0))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(0', y) → 0'
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
mod(x, 0') → 0'
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0') → false
lt(0', s(x)) → true
lt(s(x), s(y)) → lt(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(0', y) → 0'
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
mod(x, 0') → 0'
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0') → false
lt(0', s(x)) → true
lt(s(x), s(y)) → lt(x, y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
gt,
mod,
ltThey will be analysed ascendingly in the following order:
gt < minus
minus < mod
lt < mod
(8) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gt, minus, mod, lt
They will be analysed ascendingly in the following order:
gt < minus
minus < mod
lt < mod
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
false, rt ∈ Ω(1 + n5
0)
Induction Base:
gt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, mod, lt
They will be analysed ascendingly in the following order:
minus < mod
lt < mod
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(13) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, mod
They will be analysed ascendingly in the following order:
lt < mod
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n383_0),
gen_0':s3_0(
n383_0)) →
false, rt ∈ Ω(1 + n383
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
lt(gen_0':s3_0(+(n383_0, 1)), gen_0':s3_0(+(n383_0, 1))) →RΩ(1)
lt(gen_0':s3_0(n383_0), gen_0':s3_0(n383_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n383_0), gen_0':s3_0(n383_0)) → false, rt ∈ Ω(1 + n3830)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
mod
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mod.
(18) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n383_0), gen_0':s3_0(n383_0)) → false, rt ∈ Ω(1 + n3830)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(20) BOUNDS(n^1, INF)
(21) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n383_0), gen_0':s3_0(n383_0)) → false, rt ∈ Ω(1 + n3830)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'mod(
x,
0') →
0'mod(
x,
s(
y)) →
if1(
lt(
x,
s(
y)),
x,
s(
y))
if1(
true,
x,
y) →
xif1(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
mod :: 0':s → 0':s → 0':s
if1 :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)